Kinetics of allosteric transitions in S-adenosylmethionine riboswitch are accurately predicted from the folding landscape.

نویسندگان

  • Jong-Chin Lin
  • D Thirumalai
چکیده

Riboswitches are RNA elements that allosterically regulate gene expression by binding cellular metabolites. The SAM-III riboswitch, one of several classes that binds S-adenosylmethionine (SAM), represses translation upon binding SAM (OFF state) by encrypting the ribosome binding sequence. We have carried out simulations of the RNA by applying mechanical force (f) to the ends of SAM-III, with and without SAM, to get quantitative insights into the f-dependent structural changes. Force-extension (z) curves (FECs) for the apo (ON) state, obtained in simulations in which f is increased at a constant loading rate, show three intermediates, with the first one being the rupture of SAM binding region, which is greatly stabilized in the OFF state. Force-dependent free energy profiles, G(z,f), as a function of z, obtained in equilibrium constant force simulations, reveal the intermediates observed in FECs. The predicted stability difference between the ON and OFF states using G(z,f) is in excellent agreement with experiments. Remarkably, using G(z,f)s and estimate of an effective diffusion constant at a single value of f allows us to predict the f-dependent transition rates using theory of first passage times for both the apo and holo states. To resolve the kinetics of assembly of SAM-III riboswitch in structural terms, we use force stretch-quench pulse sequences in which the force on RNA is maintained at a low (fq) value starting from a high value for a time period tq. Variation of tq over a wide range results in resolution of elusive states involved in the SAM binding pocket and leads to accurate determination of folding times down to fq = 0. Quantitative measure of the folding kinetics, obtained from the folding landscape, allows us to propose that, in contrast to riboswitches regulating transcription, SAM-III functions under thermodynamic control provided the basal concentration of SAM exceeds a small critical value. All of the predictions are amenable to tests in single molecule pulling experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition path times for nucleic Acid folding determined from energy-landscape analysis of single-molecule trajectories.

The duration of structural transitions in biopolymers is only a fraction of the time spent searching diffusively over the configurational energy landscape. We found the transition time, τ(TP), and the diffusion constant, D, for DNA and RNA folding using energy landscapes obtained from single-molecule trajectories under tension in optical traps. DNA hairpins, RNA pseudoknots, and a riboswitch al...

متن کامل

Elucidation of the Molecular Mechanisms of Protein Folding

The chaperonin GroEL from Escherichia coli, a tetradecameric protein complex consisting of two heptameric rings stacked back to back with a central cavity, is one of the best characterized molecular chaperones that facilitate protein folding in vivo. The ATP– dependent control of the affinity for its target protein and the co-chaperonin GroES is essential for its molecular chaperone function, a...

متن کامل

Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.

Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent...

متن کامل

Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design

The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, ...

متن کامل

A magnesium-induced triplex pre-organizes the SAM-II riboswitch

Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 44  شماره 

صفحات  -

تاریخ انتشار 2013